
Theorem: Suppose we have a power series with radius of convergence R. If ∑𝑐𝑛𝑥𝑛 converges and 
|𝑥| = 𝑅, then the limit as a goes to R along the line arg(a)=arg(x) in the direction away from the origin of 
∑𝑐𝑛𝑎

𝑛 is ∑𝑐𝑛𝑥𝑛 

Recommended level for proof: 6 

Why do we want this: Because we know that taylor series work strictly inside the radius of 

convergence, but series like 1 − 1
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that the taylor series for ln(1 + 𝑥) and arctan(𝑥) respectively work at the boundary of their radius of 
convergence. If we can show that the power series that we get from using the log taylor series 
evaluated at 0.9, 0.99, 0.999, etc that we know are equal to ln(1.9), ln(1.99), ln(1.999) etc converge to 
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coincides with ln(2) (since ln is continuous there), so the taylor series will work at the edge of the 
radius of convergence whenever it actually converges there and the function we are expressing as a 
taylor series is continuous there, and we know already that it works inside the radius of convergence. 
So that is why we want this theorem. 

Proof: 

We will suppose that R=1 and that the point we are considering where the power series converges is 
the point x=1. This is because we can scale and rotate it as necessary afterwards, but this will simplify 
calculations. 

Therefore we are supposing that ∑ 𝑐𝑛
∞
𝑛=0  converges to a value we will call s and that the power series 

∑𝑐𝑛𝑥
𝑛 has radius of convergence 1. 
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Now let x be a real number strictly between 0 and 1. 
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Now we will separate out the top-right and bottom-left terms, and simplify the top right term to 𝑐0𝑥. 
Then the sum of the rest of the terms (add each term to the one directly to the bottom-right of it) is 
exactly ∑ ∑ 𝑐𝑟
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𝑐0(1 − 𝑥) into the sum on the right, ie we get ∑ 𝑐𝑛𝑥
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hypothesis of the theorem, the right hand side converges. Since ∑ 𝑐𝑟
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The sum on the right converges since differs from a convergent sum by something that approaches 0. 
Now our goal is to show that as x goes to 1 from below, ∑ 𝑐𝑛𝑥
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𝑛=0  approaches s. Note that since x<1, 

we can safely say that (1 − 𝑥)∑ 𝑥𝑛∞
𝑛=0 = 1 (geometric series or generalized binomial theorem). 

Therefore we can subtract s from both sides of the equation we deduced above to get that 
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So by the triangle inequality 
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(last line by geometric series). Since 0 < 𝑥 < 1, |𝑥|𝑀 < 1, so the last term is ast most 𝜀
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. Since M does 

not depend on x and x is a positive real number less than 1, the term |1 − 𝑥|∑ |∑ 𝑐𝑟
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This means the power series can be made arbitrarily close to s by making x sufficiently close to 1 from 
the left of 1 on the number line. This completes the proof of the theorem. 


