Theorem: Suppose we have a power series with radius of convergence R. If ), ¢,,x™ converges and
|x| = R, then the limit as a goes to R along the line arg(a)=arg(x) in the direction away from the origin of

Ycpatis ) c,x™
Recommended level for proof: 6

Why do we want this: Because we know that taylor series work strictly inside the radius of
convergence, but series like 1 — ; + § - % + § —+=In(2)and1 - é + § — % — = %rely on knowing
that the taylor series for In(1 + x) and arctan(x) respectively work at the boundary of their radius of

convergence. If we can show that the power series that we get from using the log taylor series
evaluated at 0.9, 0.99, 0.999, etc that we know are equal to In(1.9), In(1.99), In(1.999) etc converge to

1-— % + % — i + g — .-+, which clearly converges itself, then it will mean that 1 — % + % — % + % — .

coincides with In(2) (since ln is continuous there), so the taylor series will work at the edge of the
radius of convergence whenever it actually converges there and the function we are expressing as a
taylor series is continuous there, and we know already that it works inside the radius of convergence.
So that is why we want this theorem.

Proof:

We will suppose that R=1 and that the point we are considering where the power series converges is
the point x=1. This is because we can scale and rotate it as necessary afterwards, but this will simplify
calculations.

Therefore we are supposing that )., ¢, converges to a value we will call s and that the power series
Y. cpx™ has radius of convergence 1.

Note that ¢, = Y"_, ¢, — Y.'24 c,.. This seems like a complicated way of doing things but it will work
out.

Now let x be a real number strictly between 0 and 1.

Now YN_cax™ = co + XN_1 cpx™ = ¢ + XN OP—g ¢ — X125 ¢, )x™. Now we can do a little trick: We
hav the following terms in our sum:

r=0 r=0
N N—1
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Now we will separate out the top-right and bottom-left terms, and simplify the top right term to cyx.
Then the sum of the rest of the terms (add each term to the one directly to the bottom-right of it) is
exaCtly ZN : ;l 0Cr (x - xn+1) So Zn 0 Cn = Co — CoX + Zi‘vzo Cr xN + 271\1];11 Z?:O Cr (xn - xn+1).

Therefore YN_o c,x™ = co(1 — x) + XM xV + YNZI¥™_ ¢, (1 — x)x™. But then we can put the term



co(1 — x) into the sum on the right, ie we get YN_, ¢, x™ o XN+ (1 —x) XNZEyn_ ¢, x™. Bythe
hypothesis of the theorem, the right hand side converges. Slnce ZT o Cr converges, it is bounded.
Since x" goes to 0 as N gets large, Z’LO ¢, xN goes to 0 since Z’LO ¢, is bounded. Therefore when we
take the limit as N goes to infinity that term vanishes and we get Yoo Cp,X™ = (1 — X) Yoo Xoreo Cr X"
The sum on the right converges since differs from a convergent sum by something that approaches 0.
Now our goal is to show that as x goes to 1 from below, Y5, ¢,x™ approaches s. Note that since x<1,
we can safely say that (1 — x) Yo, x™ = 1 (geometric series or generalized binomial theorem).
Therefore we can subtract s from both sides of the equation we deduced above to get that

Yo CnXt =5 =(1—x) X0 o(Xr o ¢, —s)x™. Therefore if we can show that the right hand side tends
to 0, we will know that the left hand side tends to 0 so we will be done. Now lets pick a number € as

small as we like then pick an M such thatforalln = M, |Y7_,c, — s| < f, possible by definition of

summing to infinity. Then we will write Yoo (Xr_, ¢, — s)x™ as M- Ol(Zr 0oCr —S)X™ +
Yn=m(Zr=o &r — $)x™.
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So by the triangle inequality
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(last line by geometric series). Since 0 < x < 1, |x|¥ < 1, so the last term is ast most f. Since M does

not depend on x and x is a positive real number less than 1, the term |1 — x| YM-1¥"_ ¢, — s||x|™is
atmost |1 — x| YM-1¥"_ ¢, — s|, which s just |1 — x|C for some constant C. Therefore this tends to 0

as x gets close enough to 1, in particular it is eventually less than 2 Therefore, for x close enough to 1,

oo
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This means the power series can be made arbitrarily close to s by making x sufficiently close to 1 from
the left of 1 on the number line. This completes the proof of the theorem.



